the similarity metric

Garry Morrison
garry@semantic-db.org

July 28, 2016

So, let's give a nicely formatted version of my similarity metric. There are several permutations, but I call all of them simm. Let's start with the general definition:

$$
\begin{equation*}
\operatorname{simm}(w, f, g)=\frac{w f+w g-w f g}{2 \cdot \max (w f, w g)} \tag{1}
\end{equation*}
$$

where w is a weight, and f and g are "patterns". In the discrete case we have:

$$
\begin{array}{r}
w f=\sum_{i}\left|w_{i} f_{i}\right| \\
w g=\sum_{i}\left|w_{i} g_{i}\right| \\
w f g=\sum_{i}\left|w_{i} f_{i}-w_{i} g_{i}\right| \tag{4}
\end{array}
$$

In the continous case we have:

$$
\begin{array}{r}
w f=\int d x|w(x) f(x)| \\
w g=\int d x|w(x) g(x)| \\
w f g=\int d x|w(x) f(x)-w(x) g(x)| \tag{7}
\end{array}
$$

The next version we have is called the rescaled simm. In this case the shape of the pattern is important, but not the amplitude. In practice, this is the
one we use most of the time. It is derived from the general simm by rescaling f and g so that $w f=w g=1$. Here is the discrete rescaled simm:

$$
\begin{equation*}
\operatorname{simm}(w, f, g)=1-\frac{1}{2} \sum_{i}\left|\frac{w_{i} f_{i}}{\sum_{j}\left|w_{j} f_{j}\right|}-\frac{w_{i} g_{i}}{\sum_{j}\left|w_{j} g_{j}\right|}\right| \tag{8}
\end{equation*}
$$

And here is the continuous, rescaled simm:

$$
\begin{equation*}
\operatorname{simm}(w, f, g)=1-\frac{1}{2} \int d x\left|\frac{w(x) f(x)}{\int d s|w(s) f(s)|}-\frac{w(x) g(x)}{\int d s|w(s) g(s)|}\right| \tag{9}
\end{equation*}
$$

Next, the unweighted, rescaled simm follows in the obvious way by setting $w=1$:

$$
\begin{array}{r}
\operatorname{simm}(f, g)=1-\frac{1}{2} \sum_{i}\left|\frac{f_{i}}{\sum_{j}\left|f_{j}\right|}-\frac{g_{i}}{\sum_{j}\left|g_{j}\right|}\right| \\
\operatorname{simm}(f, g)=1-\frac{1}{2} \int d x\left|\frac{f(x)}{\int d s|f(s)|}-\frac{g(x)}{\int d s|g(s)|}\right| \tag{11}
\end{array}
$$

The final permutation of simm is, if $w_{i}, f_{i}, g_{i} \geq 0$ for all i, then we have this simplification of the unscaled discrete simm:

$$
\begin{equation*}
\operatorname{simm}(w, f, g)=\sum_{i} \frac{w_{i} \cdot \min \left(f_{i}, g_{i}\right)}{\max (w f, w g)} \tag{12}
\end{equation*}
$$

And then an extension of this to more than 2 "patterns":

$$
\begin{equation*}
\operatorname{simm}\left(w, f_{1}, f_{2}, \cdots, f_{p}\right)=\sum_{i} \frac{w_{i} \cdot \min \left(f_{1 i}, f_{2 i}, \cdots, f_{p i}\right)}{\max \left(w f_{1}, w f_{2}, \cdots, w f_{p}\right)} \tag{13}
\end{equation*}
$$

where:

$$
\begin{equation*}
w f_{k}=\sum_{i}\left|w_{i} f_{k i}\right| \tag{14}
\end{equation*}
$$

Now, let's derive the general case for p "patterns", in full ugly detail, though we could use the $p=2$ case to guess the general form. To do this we need to move to complex numbers, and p'th roots of unity. Let's define a short cut notation for them:

$$
\begin{equation*}
j_{p k}=e^{2 \pi i k / p} \tag{15}
\end{equation*}
$$

and note this identity:

$$
\begin{equation*}
\sum_{k=1}^{p} j_{p k}=0 \tag{16}
\end{equation*}
$$

Next, to make the derivation cleaner, define these guys:

$$
\begin{array}{r}
w f^{p}=\int d x\left|\sum_{k=1}^{p} j_{p k} w(x) f_{k}(x)\right| \\
w f_{k}=\int d x\left|w(x) f_{k}(x)\right| \\
A=\left|\sum_{k=1}^{p} j_{p k} w f_{k}\right| \tag{19}
\end{array}
$$

which has the key property:

$$
\begin{array}{r}
0 \leq w f^{p} \leq \sum_{k=1}^{p} w f_{k} \\
0 \leq w f^{p}+A \leq \sum_{k=1}^{p} w f_{k}+A \tag{21}
\end{array}
$$

which attains the lower bound when all $f_{k}(x)$ are equal, by way of (16), and attains the upper bound when all $f_{k}(x)$ are disjoint. Now, normalize that:

$$
\begin{equation*}
0 \leq \frac{w f^{p}+A}{\sum_{k=1}^{p} w f_{k}+A} \leq 1 \tag{23}
\end{equation*}
$$

And invert so that we have 0 when disjoint, and 1 when all $f_{k}(x)$ are equal:

$$
\begin{equation*}
0 \leq 1-\left(\frac{w f^{p}+A}{\sum_{k=1}^{p} w f_{k}+A}\right) \leq 1 \tag{24}
\end{equation*}
$$

And tidy:

$$
\begin{equation*}
0 \leq \frac{\sum_{k=1}^{p} w f_{k}-w f^{p}}{\sum_{k=1}^{p} w f_{k}+A} \leq 1 \tag{25}
\end{equation*}
$$

Apply one more identity:

$$
\begin{equation*}
\sum_{k=1}^{p} x_{k}+\left|\sum_{k=1}^{p} j_{p k} x_{k}\right| \leq p \cdot \max \left(x_{1}, x_{2}, \cdots, x_{p}\right) \tag{26}
\end{equation*}
$$

Resulting in:

$$
\begin{equation*}
0 \leq \frac{\sum_{k=1}^{p} w f_{k}-w f^{p}}{p \cdot \max \left(w f_{1}, w f_{2}, \cdots, w f_{p}\right)} \leq 1 \tag{27}
\end{equation*}
$$

So there we have it. The p pattern version of simm, which we can clearly see has the same structure as (1), and reduces to (1) when $p=2$:

$$
\begin{array}{r}
\operatorname{simm}\left(w, f_{1}, f_{2}, \cdots, f_{p}, p\right)=\frac{\sum_{k=1}^{p} w f_{k}-w f^{p}}{p \cdot \max \left(w f_{1}, w f_{2}, \cdots, w f_{p}\right)} \\
w f_{k}=\int d x\left|w(x) f_{k}(x)\right| \\
w f^{p}=\int d x\left|\sum_{k=1}^{p} j_{p k} w(x) f_{k}(x)\right| \tag{30}
\end{array}
$$

We obtain the discrete version by swapping the integral with a sum:

$$
\begin{array}{r}
w f_{k}=\sum_{i}\left|w_{i} f_{k i}\right| \\
w f^{p}=\sum_{i}\left|\sum_{k=1}^{p} j_{p k} w_{i} f_{k i}\right| \tag{32}
\end{array}
$$

Now, the p pattern version of rescaled simm obtained by mapping:

$$
\begin{array}{r}
w(x) f_{k}(x) \Rightarrow \frac{w(x) f_{k}(x)}{\int d s\left|w(s) f_{k}(s)\right|} \\
w_{i} f_{k i} \Rightarrow \frac{w_{i} f_{k i}}{\sum_{j}\left|w_{j} f_{k j}\right|} \tag{34}
\end{array}
$$

effectively setting:

$$
\begin{align*}
w f_{k} & =1 \tag{35}\\
\sum_{k=1}^{p} w f_{k} & =p \tag{36}\\
p \cdot \max \left(w f_{1}, w f_{2}, \cdots, w f_{p}\right) & =p \tag{37}
\end{align*}
$$

resulting in:

$$
\begin{array}{r}
\operatorname{simm}\left(w, f_{1}, f_{2}, \cdots, f_{p}, p\right)=1-\frac{1}{p} \int d x\left|\sum_{k=1}^{p} j_{p k} \frac{w(x) f_{k}(x)}{\int d s\left|w(s) f_{k}(s)\right|}\right| \\
\operatorname{simm}\left(w, f_{1}, f_{2}, \cdots, f_{p}, p\right)=1-\frac{1}{p} \sum_{i}\left|\sum_{k=1}^{p} j_{p k} \frac{w_{i} f_{k i}}{\sum_{j}\left|w_{j} f_{k j}\right|}\right| \tag{39}
\end{array}
$$

Next, we need to observe some symmetries of $\operatorname{simm}\left(w, f_{1}, f_{2}, \cdots, f_{p}, p\right)$. Global symmetry:

$$
\begin{array}{r}
w(x) \rightarrow s_{1} \cdot w(x) \\
f_{k}(x) \rightarrow s_{2} \cdot f_{k}(x) \tag{41}
\end{array}
$$

Global symmetry of the rescaled simm:

$$
\begin{equation*}
f_{k}(x) \rightarrow s_{2 k} \cdot f_{k}(x) \tag{42}
\end{equation*}
$$

Local symmetry:

$$
\begin{array}{r}
w(x) \rightarrow w(x) \cdot s(x) \\
f_{k}(x) \rightarrow s(x)^{-1} \cdot f_{k}(x) \tag{44}
\end{array}
$$

Providing that $s_{1}, s_{2}, s_{2 k}, s(x) \neq 0$
Finally, $\operatorname{simm}()$ is somewhat stable to changes in the order of the patterns f_{k}, though not identical. This is due to the $w f^{p}$ term in (28). The other 2 terms are order independent.

Anyway, that's it. Pick and choose which variation of simm you need depending on what you are trying to do. Though we haven't mentioned the superposition versions of simm, which follow from (12) and (13).

